
技术摘要:
一种基于故障电流通路的自适应配电网故障定位方法,对配电网内的馈线区段、FTU、电源进行编码,构建网络描述矩阵D;根据当前配电网的实际运行拓扑结构,更新网络描述矩阵D中的连接关系;根据网络描述矩阵D,生成配电网自适应开关函数;在配电网发生故障时,读取配电网 全部
背景技术:
据统计,电力系统中80%以上的故障来源于配电网,这就要求配电网能够在故障 发生后快速的分析、定位并隔离故障。随着分布式发电技术的快速发展,越来越多分布式电 源接入配电网,给配电网的安全稳定运行带来了很大的挑战。分布式电源的接入改变了原 有配电网的网络运行拓扑结构,使原有配电网由单电源的传统配电网变为含有多个电源的 主动配电网,进而导致配电网内出现双向潮流。当配电网内的线路发生故障时,除系统电源 外,接入的分布式电源也会提供故障电流,使得配电网内可能出现故障电流的双向流动,这 给配电网的故障定位带来了挑战。 目前,国内外已经针对传统配电网以及含分布式电源的配电网的故障定位技术开 展了大量相关研究,其中已发展出基于矩阵理论的直接定位方法和基于优化逼近的间接定 位方法。其中,直接定位方法基于矩阵的计算和转换,其算法简单且计算速度较快,但是这 类方法存在容错性低、实用性差等方面的缺陷。不同于直接定位方法,间接定位方法采用启 发式智能优化算法逼近实际配电网的故障状态,在准确性、容错性、实用性等方面相比直接 定位方法具有一定的优势,并在近些年得到了较多的关注和研究。 中国发明专利201610324013.3公开了一种配电网在线故障容错性定位的线性整 数规划方法,应用常规0-1线性整数规划实现馈线故障区段的定位,具有良好的数值稳定性 和高效的故障定位效率,但是该方法中所采用的开关函数基于代数算子加法运算( )或减 法运算(-)构建而成,当配电网络的运行拓扑发生改变时,基于原有的开关函数将无法得到 正确的期望节点信息,进而导致该方法发生误判,因而该方法不具备对网络运行拓扑变化 的自适应能力。 中国发明专利201711313922.8公开了一种基于分层模型和智能校验算法的配电 网故障定位方法,该方法结合了配电网的结构特点,在分析开关函数逻辑规律的基础上,以 多分支节点为边界,并对各支路进行端口等效,这在一定程度上减小了该方法中开关函数 的构建复杂程度,但是其开关函数在高渗透率、大规模的含分布式电源的配电网中仍然十 分复杂,并且该方法不具备对配电网运行拓扑变化的自适应性。 刘蓓等人在《电工技术学报》2013年第28卷第5期所著的《和声算法在含DG配电网 故障定位中的应用》中建立了基于双向潮流的开关函数模型,提出了分区处理策略,通过剔 除无故障电流的无源树枝来减少解的维数,但由于其开关函数的构建是基于“逻辑或”运算 的,这使得该方法难以适应配电网运行拓扑发生切换的情况。 Xiaoli Huang等人在《IEEE Access》2020年第8卷所著的《Fault location of distribution network base on Improved Cuckoo Search Algorithm》中提出了一种基 于改进布谷鸟算法的配电网故障定位新方法,该方法结合算法的搜索步长和迭代次数对算 9 CN 111551825 A 说 明 书 2/13 页 法进行改进,提高了算法早期的收敛速度和后期的搜索精度,但是该方法中所采用的开关 函数是基于“逻辑或”运算进行构建的,这导致该方法不具备对配电网运行拓扑变化的自适 应性。 现有的间接定位方法中的开关函数大多是基于“逻辑或”运算或代数运算构建得 到的,使得现有间接定位方法的开关函数往往较为复杂,当这类方法应用于规模较大、渗透 率较高的含分布式电源的配电网中时,该问题变得尤为突出。为此,虽有学者提出了分区、 分层的间接定位方法以降低故障定位计算的运算量,但是这种方法仍然无法从根本上降低 其基于“逻辑或”运算或代数运算所构建的开关函数的复杂性。同时,现有间接定位方法的 开关函数不能根据配电网的运行状态进行自适应更新,每当配电网的运行拓扑发生改变 时,其开关函数需要依据当前的运行拓扑进行重新构建,使得现有的间接定位方法难以适 应未来灵活运行状态下的主动配电网快速故障定位需求。 综上所述,现有的配电网故障间接定位方法中的开关函数的构建方法较为复杂, 当配电网内发生馈线运行状态切换、分布式电源投切等网络运行拓扑变化时,现有配电网 的故障间接定位方法因不具备对网络运行拓扑变化的自适应性,可能引发配电网故障定位 出错等不良后果。因此,需要对现有的配电网故障间接定位方法进行改进,提出一种具备网 络运行拓扑变化自适应性的配电网故障间接定位方法。
技术实现要素:
本发明的目的在于,针对现有配电网的故障间接定位方法所存在的开关函数构建 复杂、难以适应运行拓扑变化的问题,提出了一种基于故障电流通路的自适应配电网故障 定位方法。本发明方法首先对配电网内的馈线区段、馈线终端(Feeder Terminal Unit, FTU)、电源进行编码,构建网络描述矩阵D;根据当前配电网的实际运行拓扑结构,更新网络 描述矩阵D中的连接关系;根据网络描述矩阵D,生成配电网自适应开关函数;在配电网发生 故障时,读取配电网内所有FTU上传的电流越限信息,生成电流越限信息矩阵I;建立配电网 的故障定位模型,基于智能优化算法对配电网的故障定位模型进行求解,最终确定故障位 置。本发明方法可实现配电网内的快速故障定位,通用于传统配电网和含有分布式电源接 入的配电网,且不受配电网内馈线运行状态切换、分布式电源投切等网络运行拓扑变化的 影响。 本发明所采用的技术方案是: 一种基于故障电流通路的自适应配电网故障定位方法,包含如下具体步骤: (一)对配电网内的馈线区段、FTU、电源进行编码,构建网络描述矩阵D; 所述的对配电网内的馈线区段进行编码的方法为:对配电网内的各馈线区段进行 统一顺序编码,配电网内各馈线区段的编码为一个正整数,其中,馈线区段编码的起始值为 1,根据编码的先后顺序,各馈线区段的编码以1为单位依次递增,直至配电网内所有的馈线 区段完成编码。令配电网内含有的馈线区段总数为m,则各馈线区段的编码形式为:1,2 , 3,……,m。令配电网内的馈线区段编码为i,则有i=1,2,3,……,m。 所述的对配电网内的FTU进行编码的方法为:对配电网内的各FTU进行统一顺序编 码,配电网内各FTU的编码为一个正整数,其中,FTU编码的起始值为1,根据编码的先后顺 序,各FTU的编码以1为单位递增,直至配电网内所有的FTU完成编码。令配电网内含有的FTU 10 CN 111551825 A 说 明 书 3/13 页 总数为n,则各FTU的编码形式为:1,2,3,……,n。令配电网内的FTU编码为j,则有j=1,2, 3,……,n。 所述的对配电网内的电源进行编码的方法为:对配电网内的各个电源进行统一顺 序编码,配电网内各电源的编码为一个正整数,其中,配电网内主电源的编码为1,根据编码 的先后顺序,其他各个电源的编码以1为单位递增,直至配电网内的所有电源完成编码。令 配电网内含有的电源总数为p,则各电源的编码形式为:1,2,3,……,p。令配电网内的电源 编码为k,则有k=1,2,3,……,p。 所述的网络描述矩阵D是在对配电网内馈线区段、FTU、电源进行编码的基础上,对 配电网内元件之间的物理连接关系的描述,其数学形式为一个维度为(m 1)×(n 1)的矩 阵。令x表示矩阵的行号,y表示矩阵的列号,则网络描述矩阵D的第x行第y列的矩阵元素可 用dxy表示,当馈线区段与FTU、馈线区段与电源以及FTU与电源直接相连时,其对应的矩阵元 素值为一个非零数字,否则该元素值为0。 所述的网络描述矩阵D的构建方法包含如下2个步骤: 步骤1、根据馈线区段与FTU的连接关系,生成网络拓扑矩阵T; 步骤2、根据电源与FTU以及馈线区段的连接关系,在网络拓扑矩阵T的基础上,对 网络拓扑矩阵T进行扩展,进而得到网络描述矩阵D。 所述的网络拓扑矩阵T可根据馈线区段与FTU的连接关系获得,其数学形式为一个 维度为m×n的矩阵,网络拓扑矩阵T中的元素tij的定义为: 其中,tij表示编码为i的馈线区段与编码为j的FTU之间的连接关系,当编码为i的 馈线区段和编码为j的FTU直接相连时,tij取值为1,否则,tij取值为0;i=1,2,3,……,m,j =1,2,3,……,n,m为配电网内含有的馈线区段总数,n为配电网内含有的FTU总数。 所述的网络拓扑矩阵T扩展为网络描述矩阵D的方法包含如下2个步骤: 步骤1、在网络拓扑矩阵T的最下端和最右端分别增加一行和一列,并令所有新增 的矩阵元素的数值为0,生成一个维度为(m 1)×(n 1)的中间矩阵TM,然后将该中间矩阵TM 赋值给网络描述矩阵D,即令D=TM; 步骤2、根据配电网内电源与FTU以及电源与馈线区段的连接关系,根据下述规则 对网络描述矩阵D中的元素值进行更新: (1)若编码为k的电源和编码为i的馈线区段相连,则令di,n 1=k; (2)若编码为k的电源和编码为j的FTU相连,则令dm 1,j=k。 其中,i=1,2,3,……,m,j=1,2,3,……,n,k=1,2,3,……,p,m为配电网内含有 的馈线区段总数,n为配电网内含有的FTU总数,p为配电网内电源总数。 (二)根据当前配电网的实际运行拓扑结构,更新网络描述矩阵D中的连接关系; 所述的网络描述矩阵D的更新方法包含如下3个步骤: 步骤1、根据当前配电网的实际运行拓扑结构,判断配电网的运行拓扑结构是否发 生改变,若是,则进入步骤2;若否,则无需更新网络描述矩阵D,进入步骤3; 步骤2、确定配电网运行拓扑结构的具体变化,并根据下述规则对网络描述矩阵D 中的元素值进行更新; 11 CN 111551825 A 说 明 书 4/13 页 (1)若配电网内的编码为i的馈线区段和编码为j的FTU由连通变为断开,则令dij= 0; (2)若配电网内的编码为i的馈线区段和编码为j的FTU由断开变为连通,则令dij= 1; (3)若配电网内新增一个分布式电源,则首先令配电网内的电源总数p加1,然后令 该分布式电源的电源编码k=p。若该分布式电源与编码为i的馈线区段相连,则令di,n 1=k; 若该分布式电源与编码为j的FTU相连,则令dm 1,j=k; (4)若编码为k且与编码为i的馈线区段相连的分布式电源退出运行,则首先令配 电网内的电源总数p减1,并且令di,n 1=0,然后将编码比k大的所有电源的编码减1,以保证 电源编码的连续性; (5)若编码为k且与编码为j的FTU相连的分布式电源退出运行,则首先令配电网内 的电源总数p减1,并且令dm 1 ,j=0,然后将编码比k大的所有电源的编码减1,以保证电源编 码的连续性。 步骤3、输出网络描述矩阵D。 (三)根据网络描述矩阵D,生成配电网自适应开关函数; 所述的配电网自适应开关函数的生成方法包含如下4个步骤: 步骤1、遍历网络描述矩阵D,得到区段连接矩阵DL和电源连接矩阵P; 步骤2、对于配电网内的每一个电源,根据配电网的电源连接矩阵P和区段连接矩 阵DL,首先搜索确定编码为k的电源所连接的馈线区段,在此基础上,采用深度优先算法得 到编码为k的电源对应的电源电流通路矩阵PLk,其中,k=1,2,3,……,p,p为配电网内含有 的电源总数; 步骤3、根据主电源的电源电流通路矩阵PL1生成正向电流矩阵Z; 步骤4、对于配电网内的每一个电源,根据配电网的网络描述矩阵D、编码为k的电 源对应的电源电流通路矩阵PLk和正向电流矩阵Z生成编码为k的电源对应的区段编码至 FTU信息的转换矩阵LFk,其中,k=1,2,3,……,p,p为配电网内含有的电源总数。 在所述的配电网自适应开关函数的生成方法的步骤1中,所述的区段连接矩阵DL 反映了配电网内馈线区段连接状态,其数学形式为一个维度为m×m的矩阵,可根据网络描 述矩阵D生成,区段连接矩阵DL中的元素 的定义为: 其中,i1和i2为配电网内的馈线区段编码, 表示编码为i1的馈线区段和编码为 i2的馈线区段的连接关系,若编码为i1的馈线区段和编码为i2的馈线区段直接相连,则 否则 i2=1,2,3,……,m,m为馈线区段的数目。鉴于编码为 i1的馈线区段和编码为i2的馈线区段的直接相连等价于编码为i2的馈线区段和编码为i1的 馈线区段直接相连,区段连接矩阵DL为对称矩阵。 在所述的配电网自适应开关函数的生成方法的步骤1中,所述的区段连接矩阵DL 的生成方法包含如下2个步骤: 12 CN 111551825 A 说 明 书 5/13 页 步骤1、定义区段连接矩阵DL为一个维度为m×m的零矩阵; 步骤2、基于网络描述矩阵D,遍历搜索配电网内任意两个编码不同的馈线区段i1 和i2,若编码为i1的馈线区段和编码为i2的馈线区段同时与编码为j的FTU直接相连,即有 且 立时,则令 在所述的配电网自适应开关函数的生成方法的步骤1中,所述的电源连接矩阵P反 映了配电网内电源的位置,其数学形式为一个维度为1×p的矩阵,可根据网络描述矩阵D生 成,电源连接矩阵P中的元素pk的定义为: (1)若编码为k的电源和编码为i的馈线区段直接连接,则电源连接矩阵P中对应的 元素pk=i; (2)若编码为k的电源和编码为j的FTU直接连接,则电源连接矩阵P中对应的元素 pk=-j。 其中,k=1,2,3,……,p,i=1,2,3,……,m,j=1,2,3,……,n,m为配电网内含有 的馈线区段总数,n为配电网内含有的FTU总数,p为配电网内电源总数。 在所述的配电网自适应开关函数的生成方法的步骤1中,所述的电源连接矩阵P的 生成方法包含如下4个步骤: 步骤1、定义电源连接矩阵P为一个维度为1×p的零矩阵; 步骤2、输入配电网的网络描述矩阵D,并在配电网的网络描述矩阵D中提取得到其 最后一行和最后一列所对应的全部元素信息; 步骤3、遍历步骤2得到的元素信息,并根据下述规则进行赋值: (1)若编码为k的电源和编码为i的馈线区段直接相连,则令电源连接矩阵P中对应 的元素pk=i; (2)若编码为k的电源和编码为j的FTU直接相连,则令电源连接矩阵P中对应的元 素pk=-j; 其中,k=1,2,3,……,p,i=1,2,3,……,m,j=1,2,3,……,n,m为配电网内含有 的馈线区段总数,n为配电网内含有的FTU总数,p为配电网内电源总数。 步骤4、输出电源连接矩阵P。 在所述的配电网自适应开关函数的生成方法的步骤2中,所述的与编码为k的电源 所连接的馈线区段为与编码为k的电源直接相连的馈线区段或是经一个FTU与编码为k电源 相连的馈线区段,即为当配电网内发生故障时,该电源输出的故障电流所形成的故障电流 通路所经过的首个馈线区段。 在所述的配电网自适应开关函数的生成方法的步骤2中,所述的编码为k的电源对 应的电源电流通路矩阵PLk反映了配电网内编码为k的电源的电流通路。考虑到配电网内只 有两种电流通路(电源—电源、电源—线路末端),因此在配电网内,每一个电源对应的电流 通路数相同。设配电网内任意一个电源对应的电流通路数为h,则配电网内编码为k的电源 对应一个h行的矩阵PLk,考虑到每个电流通路流经的馈线区段数目可能不一致,可令编码 为k的电源所对应的最长电流通路中包含的馈线区段个数为c,并将c作为矩阵PLk的列数。 令x表示矩阵的行号,y表示矩阵的列号,则编码为k的电源对应的电源电流通路矩阵PLk的 第x行第y列的矩阵元素可用PLk(x,y)表示。对于每一个PLk,若第a个电流通路中第b个馈线 区段的编码为u,则有PLk(a ,b)=u,其中,k=1,2,3 ,…… ,p,a=1,2,3 ,…… ,h,b=1,2, 13 CN 111551825 A 说 明 书 6/13 页 3,……,c,p为配电网内电源总数。 在所述的配电网自适应开关函数的生成方法的步骤2中,所述的采用深度优先搜 索生成编码为k的电源对应的电源电流通路矩阵PLk的方法包含如下8个步骤: 步骤1、判断电源连接矩阵P中的元素pk的符号是否为正,若是,则进入步骤2;若 否,则进入步骤6; 步骤2、初始化禁忌表为空,然后将馈线区段pk加入禁忌表,根据区段连接矩阵DL, 采用深度优先算法,从馈线区段pk开始搜索; 步骤3、依次遍历各个馈线区段并搜索与当前馈线区段相连的馈线区段,判断是否 有不在禁忌表中的馈线区段和当前馈线区段相连,若是,则进入步骤5;若否,则说明搜索到 线路末端,保存通路信息,并进入步骤4; 步骤4、判断当前保存的电流通路数目是否等于h,若是,则编码为k的电源所对应 的全部的电流通路搜索完毕,进入步骤8;若否,则返回步骤3继续搜索; 步骤5、判断馈线区段j是否和电源相连,若是,则说明搜索到电源,保存当前电流 通路信息,并将馈线区段j加入禁忌表,返回步骤3;若否,将馈线区段j加入禁忌表,返回步 骤3; 步骤6、鉴于判断电源连接矩阵P中的元素pk的符号为负,即编码为k的电源直接和 编码为-pk的FTU相连,根据网络描述矩阵D搜索与编码为-pk的FTU相连的馈线区段,判断是 否只有1个馈线区段与编码为-pk的FTU相连,若是,则将该馈线区段加入禁忌表,进入步骤 3;若否,则说明有多个馈线区段与编码为-pk的FTU相连,进入步骤7; 步骤7、将与编码为-pk的FTU相连的所有馈线区段加入禁忌表,并返回步骤3依次 搜索各个与编码为-pk的FTU相连的馈线区段; 步骤8、根据保存的电流通路信息得到最长电流通路中包含的馈线区段个数c,定 义PLk为一个维度为h×c的零矩阵,依次存储保存的电流通路信息到PLk,输出编码为k的电 源对应的电源电流通路矩阵PLk。 在所述的配电网自适应开关函数的生成方法的步骤3中,所述的正向电流矩阵Z规 定了网络中故障电流的正方向,其数学形式为一个维度为m×m的矩阵,可根据主电源的电 源电流通路矩阵PL1生成,正向电流矩阵Z中的元素 的定义为: 其中, 表示编码为i1的馈线区段指向编码为i2的馈线区段方向的正负,若编码 为i1的馈线区段和编码为i2的馈线区段相连且主电源电流由编码为i1的馈线区段流向编码 为i2的馈线区段,则 为1,否则为0;其中,i1=1,2,3,……,m;i2=1,2,3,……,m,m为配电 网内含有的馈线区段总数。 在所述的配电网自适应开关函数的生成方法的步骤3中,所述的正向电流矩阵Z的 生成方法包含如下3个步骤: 步骤1、令x=1,y=2,定义Z为一个维度为m×m的零矩阵,其中,x表示矩阵的行号, y表示矩阵的列号; 步骤2、判断主电源的电源电流通路矩阵PL1中的第x行的第y列的元素值是否等于 14 CN 111551825 A 说 明 书 7/13 页 0,若是,则令x=x 1,y=2,进入步骤3;若否,则令 y=y 1,继续执行步骤2; 步骤3、判断x是否不大于h,若是,则进入步骤2;若否,则输出正向电流矩阵Z。 其中,h为配电网内任意一个电源对应的电流通路数,m为配电网内含有的馈线区 段总数。 在所述的配电网自适应开关函数的生成方法的步骤4中,所述的编码为k的电源对 应的区段编码至FTU信息的转换矩阵LFk反映了对于编码为k的电源配电网内馈线区段到 FTU的映射关系,其数学形式为一个维度为1×m的矩阵,其矩阵元素有两个属性,分别为映 射的FTU编码和相对于主电源电流方向的正负。编码为k的电源对应的区段编码至FTU信息 的转换矩阵LFk可根据网络描述矩阵D、编码为k的电源对应的电流通路矩阵PLk和正向电流 矩阵Z生成。 在所述的配电网自适应开关函数的生成方法的步骤4中,所述的编码为k的电源对 应的区段编码至FTU信息的转换矩阵LFk生成方法包含如下6个步骤: 步骤1、令x=1,y=1,定义编码为k的电源对应的区段编码至FTU信息的转换矩阵 LFk为一个维度为1×m的零矩阵,其中,x表示矩阵的行号,y表示矩阵的列号; 步骤2、判断y是否等于1,若是,则进入步骤3;若否,则进入步骤4; 步骤3、遍历配电网内所有FTU,若当前馈线区段和当前电源k通过编码为j的FTU相 连,则 令y=y 1,进入步骤5; 步骤4、遍历配电网内所有FTU,若当前馈线区段和前一区段通过编码为j的FTU相 连,则 令y=y 1,进入步骤5; 步骤5、判断PLk(x,y)等于0或者y大于c是否成立,若是,则令x=x 1,y=1,进入步 骤6;若否,则进入步骤2; 步骤6、判断x是否不大于h,若是,则进入步骤2;若否,则输出LFk; 其中,m为配电网内含有的馈线区段总数, 表示电流由馈线区段PLk (x,y-1)流向馈线区段PLk(x,y)的方向对应的编码,LFk(PLk(x,y))表示编码为k的电源对应 的区段编码至FTU信息的转换矩阵LFk的第PLk(x,y)列的元素。 (四)在配电网发生故障时,读取配电网内所有FTU上传的电流越限信息,生成电流 越限信息矩阵I; 所述的电流越限信息矩阵I反映了相应FTU节点是否流过故障电流,以及故障电流 的方向,其形式为I=(I1,I2,……,In),电流越限信息矩阵I中的元素Ij定义如下: 其中,Ij表示配电网内编码为j的FTU流过故障电流的状态,j=1,2,3,……,n,n为 配电网内含有的FTU总数。 (五)建立配电网的故障定位模型,基于智能优化算法对配电网的故障定位模型进 行求解,确定故障位置; 所述的配电网的故障定位模型为一个非线性优化模型,由目标函数和约束条件组 15 CN 111551825 A 说 明 书 8/13 页 成,通过计算馈线区段状态L对应的期望电流越限信息I*和实际FTU上传的电流越限信息矩 阵I的相似程度来确定故障的具体位置。 所述的配电网的故障定位模型,其目标函数为 其中,目标函数中 反映了期望电流越 限信息I*和实际FTU上传的电流越限信息矩阵I的相似程度,Ii*(x)为馈线区段状态L对应 的期望电流越限信息;目标函数中 反映了配电网内总的故障区段数,q∈(0,1)为权 重系数。 所述的配电网的故障定位模型,其约束条件为li∈{0,1},其中,i为配电网内馈线 区段的编码,i=1,2,3,……,m,li=0表示编码为i的馈线区段正常,li=1表示编码为i的馈 线区段发生故障。 所述的馈线区段状态L反映了线路的故障状态,其形式为L=(l1 ,l2,……,lm),馈 线区段状态L中的元素li定义如下: 其中,li表示编码为i的馈线区段的故障信息;i=1,2,3,……,m,m为配电网内含 有的馈线区段总数。 所述的期望电流越限信息I*的生成方法包含如下5个步骤: 步骤1、输入配电网馈线区段状态L,令k=1,定义期望电流越限信息I*为一个维度 为1×n的零矩阵,其中,k为配电网内的电源编码; 步骤2、令x=1,其中,x表示矩阵的行号; 步骤3、判断编码为k的电源对应的电源电流通路矩阵PLk的第x行是否含有故障区 段,若是,则截取从电源到故障区段的馈线区段,即故障电流流过的区间,基于当前电源对 应的区段编码至FTU信息的转换矩阵LFk将其转化为对应的FTU电流越限信息,令x=x 1,进 入步骤4;若否,则令x=x 1,进入步骤4; 步骤4、判断x是否不大于h,若是,则进入步骤3;若否,则令k=k 1,进入步骤5; 步骤5、判断k是否不大于p,若是,则进入步骤2;若否,则输出期望电流越限信息 I*。 其中,h为任意一个电源对应的电流通路数,p为配电网内含有的电源总数。 所述的基于智能优化算法对配电网的故障定位模型进行求解,其具体方法包含如 下6个步骤: 步骤1、确定种群规模N和最大迭代次数M,随机生成一个维度为N×m的解集PA,且 有PA=[L1;L2;…;Lr;…;LN];用v表示迭代次数,用Lbest表示解集PA最优个体对应的馈线区 段状态,并令v=1,r=1,Lbest为维度为1×m的零矩阵,最佳适应度gbest为无穷大;其中,Lr为 解集PA中的第r个解,为解集PA中第r行的元素所构成的一个维度为1×m的矩阵,其对应一 个馈线区段状态;r=1,2,3,……,N,v=1,2,3,……,M,m为配电网内含有的馈线区段总数; 步骤2、根据当前解集PA中的第r个解Lr得到其对应的期望电流越限信息I*,根据 16 CN 111551825 A 说 明 书 9/13 页 适应度函数计算出解Lr的适应度,若当前计算得到的适应度优于最佳适应度gbest,则将当前 计算得到的适应度保存为最佳适应度gbest,并令Lbest=Lr,r=r 1,进入步骤3;否则,令r=r 1,进入步骤3; 步骤3、判断r是否不大于N,若是,则进入步骤2;若否,则令v=v 1,进入步骤4; 步骤4、判断v是否不大于M,若是,则进入步骤5;若否,则进入步骤6; 步骤5、基于智能算法更新解集PA,令r=1,进入步骤2; 步骤6、输出最佳适应度对应的馈线区段状态Lbest。 其中,所述的适应度函数反映了馈线区段状态L对应的期望电流越限信息I*与电 流越限信息I的相似程度,其形式为故障定位模型的目标函数,其数学表达式为: 所述的智能优化算法可以选用蚁群算法、遗传算法、粒子群算法、果蝇算法、正余 弦算法、差分进化算法、萤火虫算法等。 本发明提出了一种基于故障电流通路的自适应配电网故障定位方法,与现有技术 相比,该方法所能产生的积极效果是: 第一、本发明方法可通用于传统的配电网和含有分布式电源接入的配电网,能够 实现配电网内单个故障以及多个故障的快速可靠定位; 第二、本发明方法基于配电网内各个电源故障电流通路构建配电网的自适应开关 函数,当配电网内发生故障时,本发明方法可基于自适应开关函数迅速得到配电网内各个 FTU的期望信息,避免了现有方法中采用基于“逻辑或”运算或代数运算构建的开关函数所 引起的大量冗余计算,能够有效提升故障定位计算的速度,提高故障定位的快速性; 第三、本发明方法能够在配电网运行拓扑发生变化时(例如:分布式电源投切、分 段开关及联络开关的开关状态变化等)自适应地更新网络描述信息和开关函数信息,可适 用于运行状态灵活多变的配电网的故障定位。 附图说明 图1为本发明方法的步骤流程图; 图2为本发明具体实施例的配电网模型示意图; 图3为本发明方法中生成区段编码至FTU信息的转换矩阵LF的矩阵关系示意图; 图4为本发明方法中电源编码为k的电源对应的区段编码至FTU信息的转换矩阵 LFk的生成方法流程图; 图5为本发明的自适应开关函数应用流程图; 图6为本发明的具体实施例中基于蚁群算法求解配电网的故障定位模型的方法流 程图。